

Bridge Means Restriction Long Term Approach

Design and Review Process

Long-term Bridge Means Restriction Study

Materials

Bar System

Glass Wall

Tensile Steel Mesh

Span: 230 feet Height Above Ground: 75 feet Railing Height: 41"

> High vehicular traffic High pedestrian traffic High visibility Iconic campus bridge

Ownership: City of Ithaca

First Built as a trolley bridge in 1888, it was rebuilt in the early 1900s as a combined road/trolley bridge.

Existing

Span: 220 feet Height Above Ground: 110 feet Railing Height: 41"

> High vehicular traffic Low pedestrian traffic Moderate visibility Iconic campus bridge

Ownership: City of Ithaca

First built as a trolley bridge in 1899, it was rebuilt in the early 1900s as a trolley and vehicle bridge.

Existing

Proposal B

Span: 235 feet Height Above Ground: 112 feet Railing Height: 56"

> High vehicular traffic High pedestrian traffic High visibility Iconic campus bridge

Ownership: City of Ithaca First built as a trolley bridge in 1899, rebuilt in 1960 and widened again and rebuilt in 2005.

Existing

Span: 63 feet Height Above Ground: 92 feet Railing Height: 43"

> High vehicular traffic High pedestrian traffic High visibility Iconic campus bridge

Ownership: Cornell University First built around 1869, replaced in 1897 by a stone bridge-last major repairs were made in 1987 and in 2001.

Existing

Span: 129 feet Height Above Ground: 54 feet Railing Height: 52"

High pedestrian-only traffic Low visibility Not an iconic campus bridge

Ownership: Cornell University First built around 1900 to accomodate the trolley line., it was converted to a footbridge in the 1940s and totally reconstructed in 2006.

Existing

 $\wedge N$

College Avenue

Span: 118 feet Height Above Ground: 57 feet Railing Height: 56"

High pedestrian-only traffic Moderate visibility Not an iconic campus bridge

Ownership: Cornell University First built around 1900 to accommodate the trolley line, it was converted to a footbridge in the 1940s and totally reconstructed in 2006.

Existing

Span: 270 feet Height Above Ground: 108 feet Railing Height: 60"

Medium-Low pedestrian-only traffic Moderate visibility Iconic campus bridge

Ownership: Cornell University Maps from early 1900s show a footbridge across the gorge in the area. The present bridge was constructed in 1960, with repairs in 1974, 1978, 1979, 1984, and 2003.

Existing

Suspension Bridge at Fall Creek Gorge

Proposal B

Suspension Bridge at Fall Creek Gorge

Proposal B

Suspension Bridge at Fall Creek Gorge

Proposal B

Means Restriction Materials & Methods

Conventional Systems Leaning & Enclosed Fences

Material: Glass Wall Rockefeller Center

Material: Horizontal Net Suspended Below Golden Gate Means Restriction Project

Material: Tensile Steel Mesh Stadion Center, Austria

Debris Removal

Debris Removal: Horizontal Net Retraction

Ergonomic Modeling: Analysis of Static Ergonomics Body to Object

AnyBody software computer ergonomic modeling

Ergonomic Modeling: Full-Scale Mock-Up

Ergonomic Modeling: Full-Scale Mock-Up

Bridge Maintenance

Bridge Maintenance: NY State DOT "Snooper" Truck

02 March 2011 NADAAA inc

Bridge Maintenance: Snow Removal

$$x = v_{0x} t$$

 $y = v_{0y} t - \frac{1}{2}gt^2$

Using the quadratic formula to solve for t gives two values of time for a given value of y.

$$t = \frac{v_{0y}}{g} + \sqrt{\frac{v_{0y}^2}{g^2} + \frac{2y}{g}}$$

Substitution of the two time values gives the two values of x corresponding to a given height y

02 March 2011 NADAAA inc

02 March 2011 NADAAA inc

02 March 2011 NADAAA inc

02 March 2011 NADAAA inc