Richard L. Liboff, Cornell professor emeritus of electrical and computer engineering for almost 35 years, died March 9 in New York City. He was 82.

Richard was born Dec. 30, 1931, in Brooklyn, New York, and educated at Brooklyn College (Bachelor of Arts, 1953). He earned his Ph.D. in physics at New York University in 1961, and began his academic career teaching physics there while working as a research associate at the Courant Institute of Mathematics. In 1964 the College of Engineering was beginning to hire promising young faculty in an effort to build up the research program, and Richard was identified for his expertise in applied mathematics and plasma physics. He was hired by the School of Electrical Engineering to help build a new curriculum and research agenda. The first few years of graduate students in plasma physics at Cornell all learned the basic theoretical intricacies of the field from this very gifted teacher.

Richard specialized in applied mathematics as applied to plasma physics, kinetic theory, electrodynamics and quantum mechanics.
He co-chaired the first International Symposium on Kinetic Equations here in 1969. He was the principal investigator on federal grants in theoretical plasma physics, a member of the American Physical Society and of Sigma Xi, the science fraternity. He was promoted to professor of electrical engineering and of applied and engineering physics in 1970.

He taught many courses in electrical engineering, including electromagnetics, plasma physics, kinetic theory, and quantum mechanics. He loved interacting with the students, both in and out of the classroom. One of his trademarks was to close the door to the classroom forcefully as he entered, signifying the beginning of class. One day the students removed the pins from the door, and as he slammed it, the door went flying and hit the floor with a loud bang! That cured him of his grand entrances. The graduate student equivalent of this flourish occurred often because Richard was always in the middle of a calculation if he was in his office with the door closed. Graduate students who knocked on the door learned quickly to “read” the tone-of-voice of the loud “come-in” in order to decide to ask to talk with him right then or the next day. Make the wrong choice and you could be in the middle of a complicated applied math problem with Richard for 2 hours instead of getting the one-word answer you needed to a simple question.

He also enjoyed playing chess. His office was near the front entrance of Phillips Hall, so he saw lots of people come and go. When he saw a new face he would enthusiastically ask “Do you play chess?!” Few people who entered Phillips Hall while Richard was active escaped this invitation. If he were a worthy opponent, that person could depend upon an invitation to his home for a meal and a few more games.

He always enjoyed continuous learning, regardless of the subject. With the arrival of students from abroad each year he would become acquainted and then ask them to teach him a phrase in their native tongue. He could say, “Do you speak…(fill in the blank)?” in over a dozen languages. He also loved to engage new faculty in conversation and learn what they were doing; his curiosity had no bounds.
We all knew him as a loveable character. He was constantly trying to master new subjects or new math, and when he ran into a problem he would seek help from one of his colleagues. His trademark technique with fellow faculty members was to burst into someone’s office, go straight to the blackboard and start outlining the mathematics of the problem. As he started to explain it, usually to a completely bewildered faculty member who had been otherwise engaged until his door flew open, Richard would suddenly discover the insight he was missing, exclaim “Ah, that’s the answer. You are a genius!” and then run back to his office. This whole process took perhaps 30 seconds, and it happened so often that many of us just sat back and watched the whole event passively, knowing that we would soon be praised and his problem would be resolved. He was one of those people who recognized that teaching is a great way to learn. His effort to explain the problem usually sharpened his reasoning to the point where the answer became clear. It is a method of learning that many of us emulate today.

Richard’s curiosity, and his desire to learn new things and then teach them to others made him extremely effective at writing textbooks. Among our faculty, Richard still holds two records, one for the most textbooks written, and the second for the most textbooks sold. The first of his five texts was Introduction to the Theory of Kinetic Equations (1969). He also wrote a text on electromagnetism, and two on kinetic theory. But by far his most important contribution was the certified best-seller Introductory Quantum Mechanics. This book, to date, has sold over 100,000 copies and been translated into at least 5 languages. It is likely that hundreds of thousands of students around the world have learned quantum mechanics from this textbook, which makes it one of the most influential quantum mechanics texts in the last 40 years. This book even made an appearance 10 minutes into the “Spider-Man 2” movie, where the nerdy star stumbles while rushing out of a classroom at Columbia and drops it so that the cover can be seen.

Having grown up in New York City, Richard was fascinated by the outdoors, and one of the first things he did upon moving to Ithaca was to buy a house with a yard. He proceeded to plant a lot of trees, which was charming when they were small, but over the years his
yard became an incredibly dense forest! He was always upbeat, and he and his wife Myra hosted many delightful faculty dinners at their house. He also hosted dinners with his graduate students - - especially the ones that played chess. He portrayed an innocence about the small town life in Ithaca, but in fact he was totally at home here. He enjoyed horseback riding, which he did frequently in the Finger Lakes region. He was a classic Ivy League professor, appearing occasionally absent-minded as he focused on his scholarship, especially when seen walking to his car at the end of a winter day wrapped in a scarf, heavy overcoat and warm hat, but always keenly aware of what he was doing. He loved learning new things, especially new physics, and he loved writing books. His best scholarship is still at work, teaching thousands of young minds the beauty of quantum mechanics. His legacy will live for a long time.

David Hammer and Clifford Pollock